CSCI 210: Computer Architecture
Lecture 34: Caches Il

Stephen Checkoway
Oberlin College

Jan. 5, 2022
Slides from Cynthia Taylor

Memory Access

* Use main memory

addresses

 When looking for data, .—
check on-chip cache(s)
— 1. cache - < off-chip cache

— 2. main memory
— 3. disk

- " o

Memory Hierarchy Terms

* Block: unit of copying

— May be multiple words

Processor — On x86-64, a block is 64 bytes

 Hit: data in the cache

Y

— Hit ratio: hits/accesses

| Data is transforred e Miss: data not in the cache

Y

— Time taken: miss penalty

— Miss ratio: misses/accesses
= 1 — hit ratio

High-level cache strategy

* Divide all of memory into
consecutive blocks

 Copy data (memory <
cache) one block at a time

 To access data, check if it
exists in the cache before
checking memory

00000000
00000020
00000040
00000060
00000080
000000AO0
000000CO
000000EO
00000100
00000120

FFFFFFEOQO

32 A0 5C .. \

00 00 00 .. ////

FE FF 3C ..

32 A0 5C ..

00 00 00 ..

Memory addresses, block addresses, offsets

o 01 01 0111001 0011101011001 0100011

Imagine we have blocks of size 32 bytes (not bits!)

Every byte of memory can be specified by giving

— A (32
— A 5-b

— 5)-bit block address (in purple)
it offset into the block (in green)

To read a byte of memory

—find t
the b

— Use t

ne appropriate 32-byte block in either cache or memory using
ock address

ne offset to select the appropriate byte from the block

With a block size of 64 bytes, how many bits is the
block address? How many bits is the offset?
(Assume 32-bit addresses.)

ock address size is 32 — 4 = 28 bits; offset size is 4 bits

ock address size is 32 — 5 = 27 bits; offset size is 5 bits
ock address size is 32 — 6 = 26 bits; offset size is 6 bits

ock address size is 32 — 5 = 27 bits; offset size is 4 bits

m O O © >
0o O OO O OO
OO O O O O

ock address size is 32 — 5 = 27 bits; offset size is 6 bits

Where is a block of memory stored in cache?

* Given a memory address, we °999999° Data
. . «, . 00000020
can divide it into a block FE FF 3C ..
00000040 32 A0 5C .. \
address and an offset 10000060 ——
* Where in cache is the block 0ooooo8o
Stored? 000000A0
: , 000000C0O 00 00 00 ..
* Basic problem: Cache is 10000080 /
, 00 00 00 ..
smaller than main memory 00000100
00000120

FFFFFFEOQO

Direct-mapped cache

* Block location in cache determined by block address

* Direct mapped: only one possible location
— (Block address) modulo (#Blocks in cache)

OOOOOOOO
OOOOOOOO
OOOOOOOO

\

: /r i

00001 00101 01001 01101 10001 10101 11001 11101
Memory

. #Blocks is a

power of 2

Use low-order
address bits

Problem: Collisions

* Many block addresses map
to the same cache location

e How do we know which
particular block is stored in
a cache location?

— Store block address as well
as the data

— Actually, only need the high-
order bits

— Called the tag

00000000
00000020
00000040
00000060
00000080
000000AO0
000000CO
000000EO
00000100
00000120

FFFFFFEOQO

32 A0 5C ..

7F 40 61 ..

AN

FE FF 3C ..

32 A0 5C ..

00 00 00 ..

Memory addresses, block addresses, offsets

o 01 01 0111001 001101011001 0100011

Block size of 32 bytes (not bits!)
8-block cache (this is purely an example!)

Each address

— A (32 — 5)-bit block address (in purple and blue)
— A 5-bit offset into the block (in green)

Block address can be divided into
— A (32 — 3 - 5)-bit tag (purple)
— A 3-bit cache index (blue)

If we have a block size of 64-bytes and our cache
holds 256 entries how large are the tag, index, and
offset?

tag index offset
et el ot

A 32-3-8

B 32-3-6 3 6

C 32-6-8 6 8

D 32-8-6 8 6

E 32-8-8 8 8

Cache layout (so far)

+ Tag stores high-order e lom
b|tS Of address 0000420 FE FF 3C 7F ..

e Data stores all of the 0012345 32 A0 5¢C 21 ..
data for the block (e.g.,
32 bytes)

O00F3CB 00 00 00 0O ..

High-level cache strategy

* Divide all of memory into
consecutive blocks

 Copy data (memory <
cache) one block at a time

* Cache lookup:

— Get the index of the block in
the cache from the address

— Compare the tag from the
address with the tag in the
cache

00000000
00000020
00000040
00000060
00000080
000000AO0
000000CO
000000EO
00000100
00000120

FFFFFFEOQO

32 ..

7F ...

N

g |Data

0000420 FE FF 3C ..

0000004 32 A0 5C ..

000F3CB 00 00 00 ..

000
001

010
011
100
101

110
111

How do we know if it’s in the cache?

 What if there is no data in a location?
— Valid bit: 1 = present, O = not present
— Initially O

Direct-mapped cache layout

+ Valid stores Lifdatais [rE ST
0
* Tag stores high-order] 0012345 32 A0 5C 21 ..
bits of address :
0
* Data stores all of the 1 000F3CB 00 00 00 00 ..
data for the block (e.g., 0
0

32 bytes)

High-level cache strategy

* Divide all of memory into 00000000 v |Tag |Data

consecutive blocks 00000020 0000420 FE FF 3C ..
00000040
 Copy data (memory <

1
0
. 00000060 \ 1 0012345 32 A0 5C ..

cache) one block at a time 10000080 0

* Cache lookup: 0000000 0
1

0

0

— Get the index of the block in ~ ©000000c0 JobEEeE |0 00 O -
the cache from the address 000000E0

— Check the valid bit; compare 00000100
the tag to the address 00000120

FFFFFFEOQO

Example

64 blocks, 16 bytes/block

— To what cache index does address 0x1234 map?
Block address = _Ox1234/16j =0x123
Index = 0x123 modulo 64 = 0x23

No actual math required: just select appropriate bits from
address!

O 0O 0OOOOOO O OOOUOUOUOUOUOOOI11O0ODO10O0OMO0OI1T1TO0M1TOQO00O0

31 10 9 4 3 0

Tag Index | Offset
22 bits 6 bits 4 bits

Memory access

Address (showing bit positions)

Data

3130 --- 131211---2 10
Byte
offset
Hit +20 10
N Tag
Index
Index Valid Tag Data
0
1
2
® ®
1021
1022
1023
d20 d 32
(=

Direct Mapped Cache

data byte addresses

00000100
00001000
00001100
00000100
0000 1000
00010100
00000100
00001000
00010100
00011000
00001100
00001000
00000100

E None are correct

tag data

00

><‘<NC§‘<><E*<><N*<><
IIT Tz 2Tz 222>
O F - e F e - Y Y
2l |2zl 2|2 2o
e b= ol i ol b= el ol - e ol e - b= -l [

01

10
11

Four blocks, each block holds four bytes

Reading

e Next lecture: More Caches!
— Section 6.4

* Problem Set 11 due Friday

